Retrovirology (Jul 2022)

Two lymphoid cell lines potently silence unintegrated HIV-1 DNAs

  • Franziska K. Geis,
  • Demetra P. Kelenis,
  • Stephen P. Goff

DOI
https://doi.org/10.1186/s12977-022-00602-7
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Mammalian cells mount a variety of defense mechanisms against invading viruses to prevent or reduce infection. One such defense is the transcriptional silencing of incoming viral DNA, including the silencing of unintegrated retroviral DNA in most cells. Here, we report that the lymphoid cell lines K562 and Jurkat cells reveal a dramatically higher efficiency of silencing of viral expression from unintegrated HIV-1 DNAs as compared to HeLa cells. We found K562 cells in particular to exhibit an extreme silencing phenotype. Infection of K562 cells with a non-integrating viral vector encoding a green fluorescent protein reporter resulted in a striking decrease in the number of fluorescence-positive cells and in their mean fluorescence intensity as compared to integration-competent controls, even though the levels of viral DNA in the nucleus were equal or in the case of 2-LTR circles even higher. The silencing in K562 cells was functionally distinctive. Histones loaded on unintegrated HIV-1 DNA in K562 cells revealed high levels of the silencing mark H3K9 trimethylation and low levels of the active mark H3 acetylation, as detected in HeLa cells. But infection of K562 cells resulted in low H3K27 trimethylation levels on unintegrated viral DNA as compared to higher levels in HeLa cells, corresponding to low H3K27 trimethylation levels of silent host globin genes in K562 cells as compared to HeLa cells. Most surprisingly, treatment with the HDAC inhibitor trichostatin A, which led to a highly efficient relief of silencing in HeLa cells, only weakly relieved silencing in K562 cells. In summary, we found that the capacity for silencing viral DNAs differs between cell lines in its extent, and likely in its mechanism.

Keywords