Cell Regeneration (Dec 2024)
Recent progress of principal techniques used in the study of Müller glia reprogramming in mice
Abstract
Abstract In zebrafish, Müller glia (MG) cells retain the ability to proliferate and de-differentiate into retinal progenitor-like cells, subsequently differentiating into retinal neurons that can replace those damaged or lost due to retinal injury. In contrast, the reprogramming potential of MG in mammals has been lost, with these cells typically responding to retinal damage through gliosis. Considerable efforts have been dedicated to achieving the reprogramming of MG cells in mammals. Notably, significant advancements have been achieved in reprogramming MG cells in mice employing various methodologies. At the same time, some inevitable challenges have hindered identifying accurate MG cell reprogramming rather than the illusion, let alone improving the reprogramming efficiency and maturity of daughter cells. Recently, several strategies, including lineage tracking, multi-omics techniques, and functional analysis, have been developed to investigate the MG reprogramming process in mice. This review summarizes both the advantages and limitations of these novel strategies for analyzing MG reprogramming in mice, offering insights into enhancing the reliability and efficiency of MG reprogramming. Graphical Abstract
Keywords