BMC Endocrine Disorders (Mar 2022)

Evaluating the variety of GNAS inactivation disorders and their clinical manifestations in 11 Chinese children

  • Guoying Chang,
  • Qun Li,
  • Niu Li,
  • Guoqiang Li,
  • Juan Li,
  • Yu Ding,
  • Xiaodong Huang,
  • Yongnian Shen,
  • Jian Wang,
  • Xiumin Wang

DOI
https://doi.org/10.1186/s12902-022-00941-8
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background The GNAS gene on chromosome 20q13.3, encodes the alpha-subunit of the stimulatory G protein, which is expressed in most tissues and regulated through reciprocal genomic imprinting. Disorders of GNAS inactivation produce several different clinical phenotypes including pseudohypoparathyroidism (PHP), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). The clinical and biochemical characteristics overlap of PHP subtypes and other related disorders presents challenges for differential diagnosis. Methods We enrolled a total of 11 Chinese children with PHP in our study and analyzed their clinical characteristics, laboratory results, and genetic mutations. Results Among these 11 patients, nine of them (9/11) presented with resistance to parathyroid hormone (PTH); and nine (9/11) presented with an Albright′s hereditary osteodystrophy (AHO) phenotype. GNAS abnormalities were detected in all 11 patients, including nine cases with GNAS gene variations and two cases with GNAS methylation defects. These GNAS variations included an intronic mutation (c.212 + 3_212 + 6delAAGT), three missense mutations (c.314C > T, c.308 T > C, c.1123G > T), two deletion mutations (c.565_568delGACT*2, c.74delA), and two splicing mutations (c.721 + 1G > A, c.432 + 1G > A). Three of these mutations, namely, c.314C > T, c.1123G > T, and c.721 + 1G > A, were found to be novel. This data was then used to assign a GNAS subtype to each of these patients with six cases diagnosed as PHP1a, two cases as PHP1b, one as PPHP, and two as POH. Conclusions Evaluating patients with PTH resistance and AHO phenotype improved the genetic diagnosis of GNAS mutations significantly. In addition, our results suggest that when GNAS gene sequencing is negative, GNAS methylation study should be performed. Early genetic detection is required for the differential diagnosis of GNAS disorders and is critical to the clinician’s ability to distinguish between heterotopic ossification in the POH and AHO phenotype.

Keywords