Scientific Reports (Sep 2024)

Multi-objective optimization of an EDM process for Monel K-500 alloy using response surface methodology-multi-objective dragonfly algorithm

  • Prosun Mandal,
  • Suman Mondal,
  • Robert Cep,
  • Ranjan Kumar Ghadai

DOI
https://doi.org/10.1038/s41598-024-71697-5
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Monel K-500 is a high-performance superalloy composed of nickel and copper, renowned for its exceptional strength, hardness, and resistance to corrosion. To machine this material more precisely and accurately, Electrical Discharge Machining (EDM) is one of the best choices. In EDM, material removal rate (MRR) and electrode wear rate (EWR) are crucial performance parameters that are often conflicting in nature. These parameters depend on several input variables, including peak current (Ip), pulse on time (Ton), duty cycle (Tau), and servo voltage (SV). Optimizing the EDM process is essential for enhancing performance. In this research, a set of experiments were conducted using EDM on Monel K500 alloy to determine the optimal process parameters. The Box–Behnken design was used to prepare the experimental design matrix. Utilizing the experimental data, a second-order mathematical model was developed using Response Surface Methodology (RSM). R2 value is found to be 99.40% and 96.60% for MRR and EWR RSM-based prediction model, respectively. High value of R2 is indicated is indicated good adequacy for prediction. The mathematical model further used in multi-objective dragonfly algorithm (MODA): a new meta-heuristic optimization technique to solve multi-objective optimization problem of EDM. The MODA is a very useful technique to achieve optimal solutions from the multi decision criteria. Utilizing this technique, a set of non-dominated solutions was obtained. Further, the TOPSIS method was used to determine the most desirable optimal solution, which was found to be 0.0135 mm3/min for EWR and 6.968 mm3/min for MRR. These results were obtained when the optimal process parameters were selected as Ip = 6 A, Ton = 200 µs, Tau = 12, and SV = 41.6 V. Operators can machine Monel K500 by selecting the above-mentioned optimal parameters to achieve the best performance.

Keywords