Minerals (Feb 2022)

Spatial Distribution Characteristics of Plastic Failure and Grouting Diffusion within Deep Roadway Surrounding Rock under Three-Dimensional Unequal Ground Stress and Its Application

  • Yaoguang Huang,
  • Wanxia Yang,
  • Yangyang Li,
  • Weibin Guo

DOI
https://doi.org/10.3390/min12030296
Journal volume & issue
Vol. 12, no. 3
p. 296

Abstract

Read online

To explore the bolt-grouting method of the deep roadway under three-dimensional unequal ground stress, a unidirectional coupling model of surrounding rock plastic failure and grouting diffusion considering the influence of excavation disturbance stress was established. Spatial evolution characteristics of plastic failure and grouting diffusion, and the impact of the spacing and row spacing of grouting bolts/cables on grout diffusion, were simulated by using the numerical method. The results revealed that the horizontal ground stress perpendicular to the axial direction of the roadway was the main factor inducing roadway damage. Moreover, the more significant the difference of the ground stress in three directions, the larger the plastic zone of the roof corner and floor corner of the roadway. Under different lateral pressure coefficients, the grout diffused can be approximate ellipsoid and cylinders. Furthermore, the larger the ratio of lateral pressure coefficients perpendicular to and parallel to the axial direction of roadway, the larger the diffusion length of grout in each spatial direction in the surrounding rock. In bolt-grouting support, the length of the grouting bolts/cables should be greater than the plastic zone of the surrounding rock, and the optimal relationship between their spacing and row spacing and diffusion length of grout is determined. The research results were applied in the bolt-grouting engineering for the three-level main roadway in the Haizi Coal Mine, and a good support effect was achieved. This can provide technical guidance and a method of reference for the design and parameter optimization of bolt-grouting support for roadways under deep high ground stress.

Keywords