BMC Genomics (Jul 2012)

Beyond differential expression: the quest for causal mutations and effector molecules

  • Hudson Nicholas J,
  • Dalrymple Brian P,
  • Reverter Antonio

DOI
https://doi.org/10.1186/1471-2164-13-356
Journal volume & issue
Vol. 13, no. 1
p. 356

Abstract

Read online

Abstract High throughput gene expression technologies are a popular choice for researchers seeking molecular or systems-level explanations of biological phenomena. Nevertheless, there has been a groundswell of opinion that these approaches have not lived up to the hype because the interpretation of the data has lagged behind its generation. In our view a major problem has been an over-reliance on isolated lists of differentially expressed (DE) genes which – by simply comparing genes to themselves – have the pitfall of taking molecular information out of context. Numerous scientists have emphasised the need for better context. This can be achieved through holistic measurements of differential connectivity in addition to, or in replacement, of DE. However, many scientists continue to use isolated lists of DE genes as the major source of input data for common readily available analytical tools. Focussing this opinion article on our own research in skeletal muscle, we outline our resolutions to these problems – particularly a universally powerful way of quantifying differential connectivity. With a well designed experiment, it is now possible to use gene expression to identify causal mutations and the other major effector molecules with whom they cooperate, irrespective of whether they themselves are DE. We explain why, for various reasons, no other currently available experimental techniques or quantitative analyses are capable of reaching these conclusions.

Keywords