Radiology Research and Practice (Jan 2021)
4DCT Scanning Technique for Primary Hyperparathyroidism: A Scoping Review
Abstract
Objective. 4DCT for the detection of (an) enlarged parathyroid(s) is a commonly performed examination in the management of primary hyperparathyroidism. Protocols are often institution-specific; this review aims to summarize the different protocols and explore the reported sensitivity and specificity of different 4DCT protocols as well as the associated dose. Materials and Methods. A literature study was independently conducted by two radiologists from April 2020 until May 2020 using the Medical Literature Analysis and Retrieval System Online (MEDLINE) database. Articles were screened and assessed for eligibility. From eligible studies, data were extracted to summarize different parameters of the scanning protocol and observed diagnostic attributes. Results. A total of 51 articles were included and 56 scanning protocols were identified. Most protocols use three (n = 25) or four different phases (n = 23). Almost all authors include noncontrast enhanced imaging and an arterial phase. Arterial images are usually obtained 25–30 s after administration of contrast, and less agreement exists concerning the timing of the venous phase(s). A mean contrast bolus of 100 mL is administered at 3-4 mL/s. Bolus tracking is not often used (n = 3). A wide range of effective doses are reported, up to 28 mSv. A mean sensitivity of 81.5% and a mean specificity of 86% are reported. Conclusion. Many different 4DCT scanning protocols for the detection of parathyroid adenomas exist in the literature. The number of phases does not appear to affect sensitivity or specificity. A triphasic approach, however, seems preferable, as three patterns of enhancement of parathyroid adenomas are described. Bolus tracking could help to reduce the variability of enhancement. Sensitivity and specificity also do not appear to be affected by other scan parameters like tube voltage or tube current. To keep the effective dose within limits, scanning at a lower fixed tube current seems preferable. Lowering tube voltage from 120 kV to 100 kV may yield similar image contrast but would also help lower the dose.