Mechanics of Advanced Composite Structures (Nov 2024)
Effect of Chilling & B4C content on Machining Efficiency and Surface Quality in Wire-Cut Machining of Aluminum Matrix Chilled Composites
Abstract
Conventional machining techniques struggle to effectively process these materials. To overcome these challenges, advanced methods like wire electric discharge machining (EDM) are being explored for cutting electrically conductive composites. This study aims to investigate the impact of various chill materials (Mild Steel, Cast Iron, Stainless Steel, and Copper), cutting parameters (Pulse On, Pulse Off time, and Current), and the weight percentage of Boron Carbide on two crucial aspects: Metal Removal Rate (MRR) and Surface Roughness (SR) of Aluminum-Boron Carbide (Al-B4C) chilled composites. By conducting ANOVA analysis, researchers seek to determine the individual and combined effects of these process variables on MRR and SR. Additionally, scanning electron microscopic analysis is employed to gain insights into the microstructure and quality of the machined surfaces. It's noteworthy that composites prepared using Cu-chill plates exhibit exceptional resistance to the machining process due to their superior mechanical properties, followed by SS-chill, CI-chill, and MS-chill. The thermal conductivity of the chill materials on solidified composites plays a pivotal role in influencing machinability and surface roughness. While the weight percentage of B4C has a lesser impact on machinability studies, it significantly affects the surface finish of the machined surface.
Keywords