Mathematics (Sep 2021)

Molecular Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications

  • Jun Liu,
  • Long Huang,
  • Chenlong Yue

DOI
https://doi.org/10.3390/math9182216
Journal volume & issue
Vol. 9, no. 18
p. 2216

Abstract

Read online

Let p→∈(0,∞)n be an exponent vector and A be a general expansive matrix on Rn. Let HAp→(Rn) be the anisotropic mixed-norm Hardy spaces associated with A defined via the non-tangential grand maximal function. In this article, using the known atomic characterization of HAp→(Rn), the authors characterize this Hardy space via molecules with the best possible known decay. As an application, the authors establish a criterion on the boundedness of linear operators from HAp→(Rn) to itself, which is used to explore the boundedness of anisotropic Calderón–Zygmund operators on HAp→(Rn). In addition, the boundedness of anisotropic Calderón–Zygmund operators from HAp→(Rn) to the mixed-norm Lebesgue space Lp→(Rn) is also presented. The obtained boundedness of these operators positively answers a question mentioned by Cleanthous et al. All of these results are new, even for isotropic mixed-norm Hardy spaces on Rn.

Keywords