Atmospheric Chemistry and Physics (Jan 2019)

New particle formation in the marine atmosphere during seven cruise campaigns

  • Y. Zhu,
  • K. Li,
  • Y. Shen,
  • Y. Gao,
  • Y. Gao,
  • X. Liu,
  • Y. Yu,
  • H. Gao,
  • H. Gao,
  • X. Yao,
  • X. Yao

DOI
https://doi.org/10.5194/acp-19-89-2019
Journal volume & issue
Vol. 19
pp. 89 – 113

Abstract

Read online

We measured the particle number concentration, size distribution, and new particle formation (NPF) events in the marine atmosphere during six cruise campaigns over the marginal seas of China in 2011–2016 and one campaign from the marginal seas to the Northwest Pacific Ocean (NWPO) in 2014. We observed relatively frequent NPF events in the atmosphere over the marginal seas of China, i.e., on 23 out of 126 observational days, with the highest frequency of occurrence in fall, followed by spring and summer. In total, 22 out of 23 NPF events were found to be associated with the long-range transport of continental pollutants based on 24 h air mass back trajectories and pre-existing particle number concentrations, which largely exceeded the clean marine background, leaving one much weaker NPF event that was likely induced by oceanic precursors alone, as supported by multiple independent pieces of evidence. Although the long-range transport signal of continental pollutants can be clearly observed in the remote marine atmosphere over the NWPO, NPF events were observed on only 2 out of 36 days. The nucleation-mode particles (<30 nm), however, accounted for as high as 35 %±13 % of the total particle number concentration during the NWPO cruise campaign, implying the existence of many undetected NPF events in the near-sea-level atmosphere or above. To better characterize NPF events, we introduce a term called the net maximum increase in the nucleation-mode particle number concentration (NMINP) and correlate it with the formation rate of new particles (FR). We find a moderately good linear correlation between NMINP and FR at FR≤8 cm−3 s−1, but no correlation exists at FR>8 cm−3 s−1. The possible mechanisms are argued in terms of the roles of different vapor precursors. We also find that a ceiling exists for the growth of new particles from 10 nm to larger sizes in most NPF events. We thereby introduce a term called the maximum geometric median diameter of new particles (Dpgmax) and correlate it with the growth rate of new particles (GR). A moderately good linear correlation is also obtained between the Dpgmax and GR, and only GR values larger than 7.9 nm h−1 can lead to new particles growing with a Dpgmax beyond 50 nm based on the equation. By combining simultaneous measurements of the particle number size distributions and cloud condensation nuclei (CCN) at different super saturations (SS), we observed a clear increase in CCN when the Dpg of new particles exceeded 50 nm at SS=0.4 %. However, this case did not occur for SS=0.2 %. Consistent with the results of previous studies in the continental atmosphere, our results imply that particles smaller than 50 nm are unlikely activated as CCN at SS=0.4 % in the marine atmosphere. Moreover, κ decrease from 0.4 to 0.1 during the growth period of new particles, implying that organics likely overwhelm the growth of new particles to CCN size. The chemical analysis of nano-Micro-Orifice Uniform Deposit Impactor (nano-MOUDI) samples reveals that trimethylamine (TMA) and oxalic acid might appreciably contribute to the growth of new particles in some cases.