Mathematics (Jan 2023)
Dual-Domain Image Encryption in Unsecure Medium—A Secure Communication Perspective
Abstract
With the growing demand for digitalization, multimedia data transmission through wireless networks has become more prominent. These multimedia data include text, images, audio, and video. Therefore, a secure method is needed to modify them so that such images, even if intercepted, will not be interpreted accurately. Such encryption is proposed with a two-layer image encryption scheme involving bit-level encryption in the time-frequency domain. The top layer consists of a bit of plane slicing the image, and each plane is then scrambled using a chaotic map and encrypted with a key generated from the same chaotic map. Next, image segmentation, followed by a Lifting Wavelet Transform, is used to scramble and encrypt each segment’s low-frequency components. Then, a chaotic hybrid map is used to scramble and encrypt the final layer. Multiple analyses were performed on the algorithm, and this proposed work achieved a maximum entropy of 7.99 and near zero correlation, evidencing the resistance towards statistical attacks. Further, the keyspace of the cryptosystem is greater than 2128, which can effectively resist a brute force attack. In addition, this algorithm requires only 2.1743 s to perform the encryption of a 256 × 256 sized 8-bit image on a host system with a Windows 10 operating system of 64-bit Intel(R) Core(TM) i5-7200U CPU at 2.5 GHz with 8 GB RAM.
Keywords