Isothermal Recombinase Polymerase Amplification (RPA) of <i>E. coli</i> gDNA in Commercially Fabricated PCB-Based Microfluidic Platforms
Maria Georgoutsou-Spyridonos,
Myrto Filippidou,
Georgia D. Kaprou,
Dimitrios C. Mastellos,
Stavros Chatzandroulis,
Angeliki Tserepi
Affiliations
Maria Georgoutsou-Spyridonos
Institute of Nanoscience and Nanotechnology, NCSR-Demokritos, Patriarchou Gregoriou E’ and 27 Neapoleos Str., Aghia Paraskevi, Attiki, 15341 Athens, Greece
Myrto Filippidou
Institute of Nanoscience and Nanotechnology, NCSR-Demokritos, Patriarchou Gregoriou E’ and 27 Neapoleos Str., Aghia Paraskevi, Attiki, 15341 Athens, Greece
Georgia D. Kaprou
Institute of Nanoscience and Nanotechnology, NCSR-Demokritos, Patriarchou Gregoriou E’ and 27 Neapoleos Str., Aghia Paraskevi, Attiki, 15341 Athens, Greece
Dimitrios C. Mastellos
Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, NCSR-Demokritos, Patriarchou Gregoriou E’ and 27 Neapoleos Str., Aghia Paraskevi, Attiki, 15341 Athens, Greece
Stavros Chatzandroulis
Institute of Nanoscience and Nanotechnology, NCSR-Demokritos, Patriarchou Gregoriou E’ and 27 Neapoleos Str., Aghia Paraskevi, Attiki, 15341 Athens, Greece
Angeliki Tserepi
Institute of Nanoscience and Nanotechnology, NCSR-Demokritos, Patriarchou Gregoriou E’ and 27 Neapoleos Str., Aghia Paraskevi, Attiki, 15341 Athens, Greece
Printed circuit board (PCB) technology has been recently proposed as a convenient platform for seamlessly integrating electronics and microfluidics in the same substrate, thus facilitating the introduction of integrated and low-cost microfluidic devices to the market, thanks to the inherent upscaling potential of the PCB industry. Herein, a microfluidic chip, encompassing on PCB both a meandering microchannel and microheaters to accommodate recombinase polymerase amplification (RPA), is designed and commercially fabricated for the first time on PCB. The developed microchip is validated for RPA-based amplification of two E. coli target genes compared to a conventional thermocycler. The RPA performance of the PCB microchip was found to be well-comparable to that of a thermocycler yet with a remarkably lower power consumption (0.6 W). This microchip is intended for seamless integration with biosensors in the same PCB substrate for the development of a point-of-care (POC) molecular diagnostics platform.