Journal of Taibah University for Science (Dec 2024)
An implication of entropy generation in Maxwell fluid containing engine oil based ternary hybrid nanofluid over a riga plate
Abstract
Nanoparticles enhance the heat transmission by recovering energy that was dissipated due to increased thermal conductivity. Engine oil, commonly known as a lubricant, facilitates the movement of energy between various substances. The purpose of this analysis is to investigate the impact of the Maxwell fluid and entropy generation on the movement of ternary hybrid nanoparticles as they flow past a Riga plate under convective boundary conditions. The ternary nanoparticles [Formula: see text] and [Formula: see text] are combined with engine oil ([Formula: see text]) as the primary liquid. The heat transfer analysis involves the examination of heat sink/source and thermal radiation. The use of a similarity transformation is employed to convert partial differential equations (PDEs) into a dimensionless form. The altered equation is subsequently solved with the homotopy analysis method (HAM), a robust analytical technique. The current analysis is marked by convergence, which denotes the answer. The impact of flow properties, such as the Maxwell parameter, modified Hartmann number, thermal radiation, and Biot number, on the velocity distribution and temperature profile. Higher values of the Maxwell fluid parameter have been shown to result in an increase in the velocity curve. The skin friction and heat transmission variances are elucidated through the utilization of tables and figures. Moreover, the findings suggest that the thermal layer of the tri hybrid nanoliquid is strengthened in reaction to higher thermal radiation and Biot number. At the same time, the thermal layer is also strengthened.
Keywords