Journal of Cardiothoracic Surgery (Oct 2018)
Skeletonized internal thoracic artery harvesting: a low thermal damage electrosurgical device provides improved endothelial layer and tendency to better integrity of the vessel wall compared to conventional electrosurgery
Abstract
Abstract Background Electrosurgery is fundamental to the precise, fast and bloodless preparation of internal thoracic artery grafts in cardiac surgery. The PEAK PlasmaBlade is a monopolar electrosurgical device that uses pulsed radiofrequency energy to generate a plasma-mediated discharge along an insulated electrode, creating a cutting edge while the blade stays near body temperature. The aim of this study is to compare the histological samples, cardiac computed-tomography of graft patency, and clinical outcomes of patients after off-pump coronary artery bypass grafting with preparation of the internal thoracic arteries by a conventional electrosurgical device and the PlasmaBlade. Methods In twenty subjects one internal thoracic artery was prepared with PlasmaBlade and the other artery with a conventional electrosurgical device. Histological samples were evaluated for three factors for potential graft failure: endothelial damage, integrity of the vessel wall and adventitial hemorrhage. Five samples per artery were evaluated by a novel scoring method based on the exposed circumference of the histological sample (“0”: 0%, “1”: 1–25%, “2”: 26–50%, “3”: 51–75%, “4”: ≥76% of the circumference). The Wilcoxon signed ranks test for mean scores within subjects was performed. Six-month-follow up by cardiac computed tomography for evaluation of graft patency was completed in 16 patients. Results Histological results demonstrated significantly less endothelial damage after PlasmaBlade (83% vs 60%, absolute: 75/90 vs. 53/89 samples with score “0–1”, p = 0.04). PlasmaBlade samples demonstrated a tendency to better wall integrity (72% vs. 54%, absolute: 64/89 vs. 47/87 samples with score “0–1”, p = 0.32). There were no differences in endothelial bleeding (PlasmaBlade 46% vs. electrosurgery 53%, absolute: 41/88 vs. 48/90 samples with score “0–1”, p = 0.63). Computed tomography confirmed non-inferiority of the PlasmaBlade to conventional electrosurgery with a patency rate of 94%. Conclusion Histologically, internal thoracic arteries harvested with PlasmaBlade demonstrate a more intact endothelial layer and a tendency to better wall integrity. Computed tomography of graft patency speaks for non-inferiority to conventional electrosurgery. PlasmaBlade may be preferable to conventional electrosurgery, if further follow-up confirms patency of internal thoracic arteries. Trial registration NCT03510026, registered 4th April 2018 (retrospectively registered).
Keywords