Mathematical Biosciences and Engineering (Aug 2023)
Spatiotemporal retrieval and feature analysis of air pollution episodes
Abstract
Air pollution has inevitably come along with the economic development of human society. How to balance economic growth with a sustainable environment has been a global concern. The ambient PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) is particularly life-threatening because these tiny aerosols could be inhaled into the human respiration system and cause millions of premature deaths every year. The focus of most relevant research has been placed on apportionment of pollutants and the forecast of PM2.5 concentration measures. However, the spatiotemporal variations of pollution regions and their relationships to local factors are not much contemplated in the literature. These local factors include, at least, land terrain, meteorological conditions and anthropogenic activities. In this paper, we propose an interactive analysis platform for spatiotemporal retrieval and feature analysis of air pollution episodes. A domain expert can interact with the platform by specifying the episode analysis intention considering various local factors to reach the analysis goals. The analysis platform consists of two main components. The first component offers a query-by-sketch function where the domain expert can search similar pollution episodes by sketching the spatial relationship between the pollution regions and the land objects. The second component helps the domain expert choose a retrieved episode to conduct spatiotemporal feature analysis in a time span. The integrated platform automatically searches the episodes most resembling the domain expert's original sketch and detects when and where the episode emerges and diminishes. These functions are helpful for domain experts to infer insights into how local factors result in particular pollution episodes.
Keywords