HardwareX (Oct 2022)

Open-source controller for low-cost and high-speed atomic force microscopy imaging of skin corneocyte nanotextures

  • Hsien-Shun Liao,
  • Imtisal Akhtar,
  • Christian Werner,
  • Roman Slipets,
  • Jorge Pereda,
  • Jen-Hung Wang,
  • Ellen Raun,
  • Laura Olga Nørgaard,
  • Frederikke Elisabet Dons,
  • Edwin En Te Hwu

Journal volume & issue
Vol. 12
p. e00341

Abstract

Read online

High-speed atomic force microscopes (HS-AFMs) with high temporal resolution enable dynamic phenomena to be visualized at nanoscale resolution. However, HS-AFMs are more complex and costlier than conventional AFMs, and particulars of an open-source HS-AFM controller have not been published before. These high entry barriers hinder the popularization of HS-AFMs in both academic and industrial applications. In addition, HS-AFMs generally have a small imaging area that limits the fields of implementation. This study presents an open-source controller that enables a low-cost simplified AFM to achieve a maximum tip-sample velocity of 5,093 µm/s (9.3 s/frame, 512 × 512 pixels), which is nearly 100 times higher than that of the original controller. Moreover, the proposed controller doubles the imaging area to 46.3 × 46.3 µm2 compared to that of the original system. The low-cost HS-AFM can successfully assess the severity of atopic dermatitis (AD) by measuring the nanotexture of human skin corneocytes in constant height DC mode. The open-source controller-based HS-AFM system costs less than $4,000, which provides resource-limited research institutes with affordable access to high-throughput nanoscale imaging to further expand the HS-AFM research community.

Keywords