Open-source controller for low-cost and high-speed atomic force microscopy imaging of skin corneocyte nanotextures
Hsien-Shun Liao,
Imtisal Akhtar,
Christian Werner,
Roman Slipets,
Jorge Pereda,
Jen-Hung Wang,
Ellen Raun,
Laura Olga Nørgaard,
Frederikke Elisabet Dons,
Edwin En Te Hwu
Affiliations
Hsien-Shun Liao
Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
Imtisal Akhtar
The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
Jorge Pereda
The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
Jen-Hung Wang
Department of Mechatronics and Robotics, Technical University of Munich, Germany
Ellen Raun
The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
Laura Olga Nørgaard
The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
Frederikke Elisabet Dons
The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
Edwin En Te Hwu
The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark; Corresponding author at: Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800 Kgs. Lyngby, Denmark.
High-speed atomic force microscopes (HS-AFMs) with high temporal resolution enable dynamic phenomena to be visualized at nanoscale resolution. However, HS-AFMs are more complex and costlier than conventional AFMs, and particulars of an open-source HS-AFM controller have not been published before. These high entry barriers hinder the popularization of HS-AFMs in both academic and industrial applications. In addition, HS-AFMs generally have a small imaging area that limits the fields of implementation. This study presents an open-source controller that enables a low-cost simplified AFM to achieve a maximum tip-sample velocity of 5,093 µm/s (9.3 s/frame, 512 × 512 pixels), which is nearly 100 times higher than that of the original controller. Moreover, the proposed controller doubles the imaging area to 46.3 × 46.3 µm2 compared to that of the original system. The low-cost HS-AFM can successfully assess the severity of atopic dermatitis (AD) by measuring the nanotexture of human skin corneocytes in constant height DC mode. The open-source controller-based HS-AFM system costs less than $4,000, which provides resource-limited research institutes with affordable access to high-throughput nanoscale imaging to further expand the HS-AFM research community.