Applied Sciences (Sep 2024)
Image-Based Musculoskeletal Models to Accurately Reproduce a Maximum Voluntary Isometric Contraction Test In Silico
Abstract
Musculoskeletal models and computational simulations are increasingly employed in clinical and research settings, as they provide insights into human biomechanics by estimating quantities that cannot be easily measured in vivo (e.g., joint contact forces). However, their clinical application remains limited by the lack of standardized protocols for developing personalized models, which in turn heavily rely on the modeler’s expertise and require task-specific validation. While motor tasks like walking and cycling have been widely studied, simulating a maximal knee extensor dynamometry test remains unexplored, despite its relevance in rehabilitation. This study aims to fill this gap by investigating the minimum amount of experimental data required to accurately reproduce a maximal voluntary contraction test in silico. For nine healthy young females, four different subject-specific musculoskeletal models with increasing levels of personalization were developed by incorporating muscle volume data from medical images and electromyographic signal envelopes to adjust, respectively, muscle maximal isometric force and tetanic activation limits. At each step of personalization, simulation outcomes were compared to experimental data. Our findings suggest that to reproduce in silico accurately the isometric dynamometry test requires information from both medical imaging and electromyography, even when dealing with healthy subjects.
Keywords