Water (Feb 2024)

A Transfer Learning Approach Based on Radar Rainfall for River Water-Level Prediction

  • Futo Ueda,
  • Hiroto Tanouchi,
  • Nobuyuki Egusa,
  • Takuya Yoshihiro

DOI
https://doi.org/10.3390/w16040607
Journal volume & issue
Vol. 16, no. 4
p. 607

Abstract

Read online

River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological stations. A prediction model incorporating a two-dimensional convolutional neural network (2D-CNN) and long short-term memory (LSTM) is constructed to exploit geographical and temporal features of radar rainfall data, and a transfer learning method using a newly defined flow–distance matrix is presented. The results of our evaluation of the Oyodo River basin in Japan show that the presented transfer learning model using radar rainfall instead of upstream measurements has a good prediction accuracy in the case of torrential rain, with a Nash–Sutcliffe efficiency (NSE) value of 0.86 and a Kling–Gupta efficiency (KGE) of 0.83 for 6-h-ahead forecast for the top-four peak water-level height cases, which is comparable to the conventional model using upstream measurements (NSE = 0.84 and KGE = 0.83). It is also confirmed that the transfer learning model maintains its performance even when the amount of training data for the prediction site is reduced; values of NSE = 0.82 and KGE = 0.82 were achieved when reducing the training torrential-rain-period data from 12 to 3 periods (with 105 periods of data from other rivers for transfer learning). The results demonstrate that radar rainfall data and a few torrential rain measurements at the prediction location potentially enable us to predict river water levels even if hydrological stations have not been installed at the prediction location.

Keywords