Polymers (May 2024)

Effect of Chitosan/Gum Arabic Blends Enriched by Sodium Nitroprusside or Methyl Salicylate on the Storability and Antioxidant Activity of Tomato Fruit

  • Mohamed A. Taher,
  • Dawood H. Dawood,
  • Mohammed A. E. Selim,
  • Basma H. Amin,
  • Elsherbiny A. Elsherbiny

DOI
https://doi.org/10.3390/polym16111518
Journal volume & issue
Vol. 16, no. 11
p. 1518

Abstract

Read online

The impact of methyl salicylate (MeSA) or sodium nitroprusside (SNP) in chitosan (CS)/Gum Arabic (GA) mixture on physio-chemical characteristics and antioxidant status during the postharvest ripening of green tomato fruits was studied. CS/GA-MeSA at a 1 mM formulation was the best treatment to retard firmness and titratable acidity (TA) losses. Moreover, this formulation retarded pigmentation progress where it had the lowest significant values of total carotenes (TCs) and lycopene (LYP) contents until the 15th day of the storage period, as well as efficiently faced the rise in malondialdehyde (MDA) levels. Moreover, peroxidase (POD), polyphenol oxidase (PPO), catalase (CAT), and phenylalanine ammonia-lyase (PAL) activities of tomatoes treated with CS/GA-SNP at 2 mM were significantly better than that of control in the primary stages of storage. CS/GA-SNP at a 2 mM formulation showed an extremely high significant content of total polyphenol (TP) in the early stage of storage, while CS/GA and CS/GA-MeSA at 1 and 2 mM accumulated higher significant TP contents than uncoated fruits at the late stage of storage. All formulations were characterized by FTIR spectroscopy. Furthermore, the polymer formulations exhibited strong antifungal activity against Alternaria alternata and Botrytis cinerea as major pathogens of postharvest tomatoes. Transmission electron microscope (TEM) observations for the mycelia of both fungi treated by CS/GA-MeSA at 2 mM revealed serious ultrastructural damage, including distortion of the cell wall and cell membrane and degradation of cytoplasmic organelles.

Keywords