能源环境保护 (Dec 2023)
Prediction and optimization of struvite recovery from wastewater by machine learning
Abstract
The recovery of nitrogen and phosphorus from simulated wastewater in the form of struvite was investigated through a Machine Learning (ML)-based approach. The Extreme Gradient Boosting Algorithm (XGBoost) and Random Forest (RF) models were used for single-objective and multi-objective prediction of the recovery rates of N and P, respectively. The effects of seven process conditions on struvite crystallization were identified. The results showed that XGBoost outperformed RF in both single-objective (R^2=0.91~0.93) and multi-objective (R^2=0.89) predictions. Furthermore, experimental validation was conducted with initial phosphorus concentrations of 10 mg/L and 1000 mg/L to determine the optimized process conditions for struvite recovery using the multi-objective model. The optimal conditions were found to be: N∶P ratio of 1.2∶1, Mg∶P ratio of 1∶1, pH of 9.5, reaction time of 80 min, reaction temperature of 25 ℃, and stirring rate of 240 r/min.
Keywords