Rice Varieties Intercropping Induced Soil Metabolic and Microbial Recruiting to Enhance the Rice Blast (<i>Magnaporthe Oryzae</i>) Resistance
Xiao-Qiao Zhu,
Mei Li,
Rong-Ping Li,
Wen-Qiang Tang,
Yun-Yue Wang,
Xiao Fei,
Ping He,
Guang-Yu Han
Affiliations
Xiao-Qiao Zhu
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
Mei Li
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
Rong-Ping Li
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
Wen-Qiang Tang
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
Yun-Yue Wang
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
Xiao Fei
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
Ping He
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
Guang-Yu Han
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
[Background] Intercropping is considered an effective approach to defending rice disease. [Objectives/Methods] This study aimed to explore the resistance mechanism of rice intraspecific intercropping by investigating soil metabolites and their regulation on the rhizosphere soil microbial community using metabolomic and microbiome analyses. [Results] The results showed that the panicle blast disease occurrence of the resistant variety Shanyou63 (SY63) and the susceptible variety Huangkenuo (HKN) were both decreased in the intercropping compared to monoculture. Notably, HKN in the intercropping system exhibited significantly decreased disease incidence and increased disease resistance-related enzyme protease activity. KEGG annotation from soil metabolomics analysis revealed that phenylalanine metabolic pathway, phenylalanine, tyrosine, and tryptophan biosynthesis pathway, and fructose and mannose metabolic pathway were the key pathways related to rice disease resistance. Soil microbiome analysis indicated that the bacterial genera Nocardioides, Marmoricola, Luedemannella, and Desulfomonile were significantly enriched in HKN after intercropping, while SY63 experienced a substantial accumulation of Ruminiclostridium and Cellulomonas. Omics-based correlation analysis highlighted that the community assembly of Cellulomonas and Desulfomonile significantly affected the content of the metabolites D-sorbitol, D-mannitol, quinic acid, which further proved that quinic acid had a significantly inhibitory effect on the mycelium growth of Magnaporthe oryzae, and these three metabolites had a significant blast control effect. The optimal rice blast-control efficiency on HKN was 51.72%, and Lijiangxintuanheigu (LTH) was 64.57%. [Conclusions] These findings provide a theoretical basis for rice varieties intercropping and sustainable rice production, emphasizing the novelty of the study in elucidating the underlying mechanisms of intercropping-mediated disease resistance.