Determination of the Chemical Composition of Lithium Niobate Powders
Oswaldo Sánchez-Dena,
Carlos J. Villagómez,
César D. Fierro-Ruíz,
Artemio S. Padilla-Robles,
Rurik Farías,
Enrique Vigueras-Santiago,
Susana Hernández-López,
Jorge-Alejandro Reyes-Esqueda
Affiliations
Oswaldo Sánchez-Dena
Instituto de Física, Universidad Nacional Autónoma de México, 04510 Mexico City, México
Carlos J. Villagómez
Instituto de Física, Universidad Nacional Autónoma de México, 04510 Mexico City, México
César D. Fierro-Ruíz
Departamento de Mecátronica y Energías Renovables, Universidad Tecnológica de Ciudad Juárez, Avenida Universidad Tecnológica 3051, Colonia Lote Bravo II, 32695 Ciudad Juárez, Chihuahua, México
Artemio S. Padilla-Robles
Instituto de Física, Universidad Nacional Autónoma de México, 04510 Mexico City, México
Rurik Farías
Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 Norte, 32310 Ciudad Juárez, Chihuahua, México
Enrique Vigueras-Santiago
Laboratorio de Investigación y Desarrollo de Materiales Avanzados, Universidad Autónoma del Estado de México, Paseo Colón esquina Paseo Tollocan, 50120 Toluca, Estado de México, México
Susana Hernández-López
Laboratorio de Investigación y Desarrollo de Materiales Avanzados, Universidad Autónoma del Estado de México, Paseo Colón esquina Paseo Tollocan, 50120 Toluca, Estado de México, México
Jorge-Alejandro Reyes-Esqueda
Instituto de Física, Universidad Nacional Autónoma de México, 04510 Mexico City, México
Existent methods for determining the composition of lithium niobate single crystals are mainly based on their variations due to changes in their electronic structure, which accounts for the fact that most of these methods rely on experimental techniques using light as the probe. Nevertheless, these methods used for single crystals fail in accurately predicting the chemical composition of lithium niobate powders due to strong scattering effects and randomness. In this work, an innovative method for determining the chemical composition of lithium niobate powders, based mainly on the probing of secondary thermodynamic phases by X-ray diffraction analysis and structure refinement, is employed. Its validation is supported by the characterization of several samples synthesized by the standard and inexpensive method of mechanosynthesis. Furthermore, new linear equations are proposed to accurately describe and determine the chemical composition of this type of powdered material. The composition can now be determined by using any of four standard characterization techniques: X-Ray Diffraction (XRD), Raman Spectroscopy (RS), UV-vis Diffuse Reflectance (DR), and Differential Thermal Analysis (DTA). In the case of the existence of a previous equivalent description for single crystals, a brief analysis of the literature is made.