Switching of three-dimensional optical cages using spatial coherence engineering
Ying Xu,
Jidong Wu,
Xinshun Zhao,
Yongtao Zhang,
Xinlei Zhu,
Yangjian Cai,
Jiayi Yu
Affiliations
Ying Xu
Shandong Provincial Engineering and Technical Center of Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Jidong Wu
Shandong Provincial Engineering and Technical Center of Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Xinshun Zhao
Shandong Provincial Engineering and Technical Center of Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Yongtao Zhang
Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
Xinlei Zhu
Shandong Provincial Engineering and Technical Center of Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Yangjian Cai
Shandong Provincial Engineering and Technical Center of Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Jiayi Yu
Shandong Provincial Engineering and Technical Center of Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Precisely capturing and manipulating microparticles is the key to exploring microscopic mysteries. Optical tweezers play a crucial role in facilitating these tasks. However, existing optical tweezers are limited by their dependence on specific beam modes, which restrict their ability to flexibly switch and manipulate optical traps, thereby limiting their application in complex scientific challenges. Here, we propose a new method to achieve type switching and manipulation of optical traps using a single structured beam via optical coherence engineering. A conjugate-model random structured beam with a switch is designed. By altering the state of the switch, we can change the type of optical cage, enabling the capture of different particle types. Furthermore, the range, strength, and position of the optical trap can be controlled by adjusting the initial beam parameters. We hope that optical coherence engineering will extend the capabilities of existing structured optical tweezers, paving the way for advances in future optical tweezers applications.