Majallah-i Dānishgāh-i ̒Ulūm-i Pizishkī-i Qum (May 2016)
Evaluation of Inhibitory and Lethal Effects of Aqueous, Ethanolic and Hydroalcoholic Extracts of Aerial Parts of Salvia chorassanica against Some Gram-negative and Gram-positive Bacteria in Vitro
Abstract
Abstract Background and Objectives: Development of bacterial resistance to antibiotics has led to an increased tendency to development of new more effective and non-toxic antimicrobial compounds. In this study, the inhibitory and lethal effects of aqueous, ethanolic, and hydroalcoholic extracts of aerial parts of Salvia chorassanica were evaluated against Listeria monocytogenes, Bacillus cereus, Salmonella typhi, and Escherichia coli O:157. Methods: In this study, Kirby–Bauer disk diffusion method was used to evaluate antimicrobial activity. In this method, bacteria were cultivated as grass culture in Mueller Hinton Agar (MHA) media. To determine the minimum inhibitory concentration and minimum bactericidal concentration, micro-dilution method with ELISA and addition of phenyl tetrazolium chloride reagent, were used. Data were analyzed using one-way ANOVA and Duncan’s test at the significance level of p<0.05. Results: The highest diameter of inhibition in agar diffusion method was related to hydroalcoholic extract of aerial parts of Salvia chorassanica against Gram-positive bacteria Bacillus cereus. The amount of calculated MIC of hydro-alcoholic extract for Gram-positive bacteria was 30mg/ml. This amount was the lowest among other measured MIC. Conclusion: Based on the results of this study, Gram-negative bacteria showed more resistance to different extracts of aerial parts of Salvia chorassanica as compared to Gram-positive bacteria, so that Salmonella typhi was found to be the most resistant bacterium among the tested bacteria.