Shanghai Jiaotong Daxue xuebao (Sep 2021)

Analysis of Factors and Significances of Adsorption Kinetics R115/NaX System

  • ZHANG Jinke, MIAO Guangwu, JIN Jiamin, CHEN Yinfei, LU Hanfeng, NING Wensheng, BAI Zhanqi, LIU Wucan

DOI
https://doi.org/10.16183/j.cnki.jsjtu.2020.065
Journal volume & issue
Vol. 55, no. 9
pp. 1071 – 1079

Abstract

Read online

To understand the adsorption kinetic mechanism of chloropentafluoroethane (R115) on NaX and then to guide the industrial applications of R115 adsorption removal and catalytic conversion, the effect of R115 concentration (referring to volume fraction) and adsorbent particle size on adsorption performance are studied by using pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. The applicability of the Thomas model and Yan model for breakthrough curve analysis are compared. A two-level three-factor experimental method is implemented to evaluate the significance and possible correlations of R115 concentration, adsorbent mass, and flow rate on adsorption performance. The results indicate that the adsorption process is mainly controlled by R115 external film diffusion. The Yan model and the pseudo-first-order adsorption kinetic model fit the experimental data better. The adsorbent mass is the most important factor significantly affecting the breakthrough time, saturation time, volume of effluent treated per gram of adsorbate, and fractional bed utilization. The interaction of adsorbent mass and flow rate has a significant effect on the volume of effluent treated per gram of adsorbate.

Keywords