Sensors (Aug 2024)

Unsupervised Domain Adaptation for Inter-Session Re-Calibration of Ultrasound-Based HMIs

  • Antonios Lykourinas,
  • Xavier Rottenberg,
  • Francky Catthoor,
  • Athanassios Skodras

DOI
https://doi.org/10.3390/s24155043
Journal volume & issue
Vol. 24, no. 15
p. 5043

Abstract

Read online

Human–Machine Interfaces (HMIs) have gained popularity as they allow for an effortless and natural interaction between the user and the machine by processing information gathered from a single or multiple sensing modalities and transcribing user intentions to the desired actions. Their operability depends on frequent periodic re-calibration using newly acquired data due to their adaptation needs in dynamic environments, where test–time data continuously change in unforeseen ways, a cause that significantly contributes to their abandonment and remains unexplored by the Ultrasound-based (US-based) HMI community. In this work, we conduct a thorough investigation of Unsupervised Domain Adaptation (UDA) algorithms for the re-calibration of US-based HMIs during within-day sessions, which utilize unlabeled data for re-calibration. Our experimentation led us to the proposal of a CNN-based architecture for simultaneous wrist rotation angle and finger gesture prediction that achieves comparable performance with the state-of-the-art while featuring 87.92% less trainable parameters. According to our findings, DANN (a Domain-Adversarial training algorithm), with proper initialization, offers an average 24.99% classification accuracy performance enhancement when compared to no re-calibration setting. However, our results suggest that in cases where the experimental setup and the UDA configuration may differ, observed enhancements would be rather small or even unnoticeable.

Keywords