Fluids and Barriers of the CNS (Jul 2024)
Cerebrospinal fluid-based spatial statistics: towards quantitative analysis of cerebrospinal fluid pseudodiffusivity
Abstract
Abstract Background Cerebrospinal fluid (CSF) circulation is essential in removing metabolic wastes from the brain and is an integral component of the glymphatic system. Abnormal CSF circulation is implicated in neurodegenerative diseases. Low b-value magnetic resonance imaging quantifies the variance of CSF motion, or pseudodiffusivity. However, few studies have investigated the relationship between the spatial patterns of CSF pseudodiffusivity and cognition. Methods We introduced a novel technique, CSF-based spatial statistics (CBSS), to automatically quantify CSF pseudodiffusivity in each sulcus, cistern and ventricle. Using cortical regions as landmarks, we segmented each CSF region. We retrospectively analyzed a cohort of 93 participants with varying degrees of cognitive impairment. Results We identified two groups of CSF regions whose pseudodiffusivity profiles were correlated with each other: one group displaying higher pseudodiffusivity and near large arteries and the other group displaying lower pseudodiffusivity and away from the large arteries. The pseudodiffusivity in the third ventricle positively correlated with short-term memory (standardized slope of linear regression = 0.38, adjusted p < 0.001) and long-term memory (slope = 0.37, adjusted p = 0.005). Fine mapping along the ventricles revealed that the pseudodiffusivity in the region closest to the start of the third ventricle demonstrated the highest correlation with cognitive performance. Conclusions CBSS enabled quantitative spatial analysis of CSF pseudodiffusivity and suggested the third ventricle pseudodiffusivity as a potential biomarker of cognitive impairment.
Keywords