Heliyon (Mar 2024)
Identification of diagnostic biomarkers for osteoarthritis through bioinformatics and machine learning
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage degradation, inflammatory arthritis, and joint dysfunction. Currently, there is a lack of effective early diagnostic methods and treatment strategies for OA. Bioinformatics and biomarker research provide new possibilities for early detection and personalized therapy of OA. In this study, we investigated the molecular mechanisms of OA and important signaling pathways involved in disease progression through bioinformatics analysis. Firstly, using the limma package, we analyzed the differentially expressed genes (DEGs) between normal healthy samples and OA cartilage tissue samples. These DEGs were found to be primarily involved in biological processes such as extracellular matrix (ECM) binding, immune receptor activity, and cytokine activity, as well as signaling pathways including cytokine receptors, ECM-receptor interaction, and PI3K-Akt. Gene set enrichment analysis revealed that in the OA group, signaling pathways such as AMPK, B cell receptor, IL-17, and PPAR were downregulated, while calcium signaling pathway, cell adhesion molecules, ECM-receptor interaction, TGF-β signaling pathway, and Wnt signaling pathway were upregulated. Additionally, we constructed a co-expression module network using WGCNA and identified key modules associated with OA, from which we selected 7 most predictive OA characteristic genes. Among them, ANTXR1, KCNS3, SGCD, and LIN7A were correlated with the level of immune cell infiltration. This study elucidates the mechanisms underlying the development of OA and identifies potential diagnostic markers and therapeutic targets, providing important insights for early diagnosis and treatment of OA.