Mathematics (Nov 2020)
Constrained Mixed-Variable Design Optimization Based on Particle Swarm Optimizer with a Diversity Classifier for Cyclically Neighboring Subpopulations
Abstract
In this research, an easy-to-use particle swarm optimizer (PSO) for solving constrained engineering design problems involving mixed-integer-discrete-continuous (MIDC) variables that adopt two kinds of diversity-enhancing mechanisms to achieve superior reliability and validity was developed. As an initial diversity-boosting tool, the local neighborhood topology of each particle is set up such that information exchange is restricted to a limited number of consecutively numbered particles. This topological mechanism forces each particle to move in the search space while interacting only with its neighboring subpopulation. The second diversity-enhancing task is to ensure that the exploration behavior of each particle in the search space is governed such that it follows the diversity classifier decision applied to its subpopulation. This diversity classification iteratively adjusts the three-phase velocity-related mechanism of each particle such that it approaches or retreats from its previous best position/the current best position among the subpopulation. In summary, this PSO tool not only introduces the social interaction of the particle within its cyclically neighboring subpopulation but also exploits the three-phase velocity behavior law governed by the distributed diversity measures categorized for each neighboring subpopulation. This scheme has superior reliability, as well as high practicality for engineering optimization problems involving MIDC variables, which are handled by the widely adopted straightforward rounding-off technique used in most swarm-inspired metaheuristic search technologies.
Keywords