Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease (May 2018)

Analysis of Right Ventricular Myocardial Stiffness and Relaxation Components in Children and Adolescents With Pulmonary Arterial Hypertension

  • Yasunobu Hayabuchi,
  • Akemi Ono,
  • Yukako Homma,
  • Shoji Kagami

DOI
https://doi.org/10.1161/JAHA.118.008670
Journal volume & issue
Vol. 7, no. 9

Abstract

Read online

BackgroundThe rate of left ventricular pressure decrease during isovolumic relaxation is traditionally assessed algebraically via 2 empirical indices: the monoexponential and logistic time constants (τE and τL). Since the pattern of right ventricular (RV) pressure decrease is quite different from that of the left ventricular, we hypothesized that novel kinematic model parameters are more appropriate and useful to evaluate RV diastolic dysfunction. Methods and ResultsEight patients with pulmonary arterial hypertension (age 12.5±4.8 years) and 20 normal subjects (control group; age 12.3±4.4 years) were enrolled. The kinematic model was parametrized by stiffness/restoring Ek and damping/relaxation μ. The model predicts isovolumic relaxation pressure as a function of time as the solution of d2P/dt2+(1/μ)dP/dt+EkP=0, based on the theory that the pressure decay is determined by the interplay of inertial, stiffness/restoring, and damping/relaxation forces. In the assessment of RV diastolic function, τE and τL did not show significant differences between the pulmonary arterial hypertension and control groups (46.8±15.5 ms versus 32.5±14.6 ms, and 19.6±5.9 ms versus 14.5±7.2 ms, respectively). The pulmonary arterial hypertension group had a significantly higher Ek than the control group (915.9±84.2 s−2 versus 487.0±99.6 s−2, P<0.0001) and a significantly lower μ than the control group (16.5±4.3 ms versus 41.1±10.4 ms, P<0.0001). These results show that the RV has higher stiffness/elastic recoil and lower cross‐bridge relaxation in pulmonary arterial hypertension. ConclusionsThe present findings indicate the feasibility and utility of kinematic model parameters for assessing RV diastolic function.

Keywords