BMC Pregnancy and Childbirth (Jul 2024)

Association between pre-gravid body mass index and clinical outcomes in in vitro fertilization: a multicentered retrospective cohort study

  • Xiaoping Liu,
  • Panyu Chen,
  • Meng Wang,
  • Weie Zhao,
  • Lei Jin,
  • Juanzi Shi,
  • Yundong Mao,
  • Cuilian Zhang,
  • Xiaoyan Liang,
  • Rui Huang

DOI
https://doi.org/10.1186/s12884-024-06661-2
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background With the increasing incidence of obesity and the childbearing-age delay among women, a debate over obesity’s impacts on pregnancy and neonatal outcomes becomes hot. The potential negative effects of obesity and aging on fertility lead to an idea, whether an obese female pursuing IVF treatment can benefit from an ideal BMI achieved over a long-time weight loss process at the cost of aging? We aimed to assess the association between body mass index (BMI) and clinical or neonatal outcomes in patients undergoing in vitro fertilization (IVF) treatment, for answering whether it is necessary to lose weight first for obese patients, particularly those at advanced age. Methods A retrospective cohort study was performed using multicentered data from China. The women were stratified into 5 groups in terms of pre-gravid BMI (kg/m2) with the WHO obesity standard (group 1: BMI < 18.5; group 2: 18.5 ≤ BMI < 23.0; group 3: 23.0 ≤ BMI < 25.0; group 4: 25.0 ≤ BMI < 30.0; group 5: BMI ≥ 30.0). The primary outcome was cumulative live birth rate (CLBR), and other clinical and neonatal outcomes were weighed as secondary outcomes. Multivariate logistic regression analyses were carried to evaluate the association between BMI and the CLBR, or between BMI and some neonatal outcomes. Furthermore, we implemented a machine-learning algorithm to predict the CLBR based on age and BMI. Results A total of 115,287 women who underwent first IVF cycles with autologous oocytes from January 2013 to December 2017 were included in our study. The difference in the CLBR among the five groups was statistically significant (P < 0.001). The multivariate logistic regression analysis showed that BMI had no significant impact on the CLBR, while women’s age associated with the CLBR negatively. Further, the calculation of the CLBR in different age stratifications among the five groups revealed that the CLBR lowered with age increasing, quantitatively, it decreased by approximately 2% for each one-year increment after 35 years old, while little difference observed in the CLBR corresponding to the five groups at the same age stratification. The machine-learning algorithm derived model showed that BMI’s effect on the CLBR in each age stratification was negligible, but age’s impact on the CLBR was overwhelming. The multivariate logistic regression analysis showed that BMI did not affect preterm birth, low birth weight infant, small for gestational age (SGA) and large for gestational age (LGA), while BMI was an independent risk factor for fetal macrosomia, which was positively associated with BMI. Conclusions Maternal pre-gravid BMI had no association with the CLBR and neonatal outcomes, except for fetal macrosomia. While the CLBR was lowered with age increasing. For the IVF-pursuing women with obesity plus advanced age, rather than losing weight first, the sooner the treatment starts, the better. A multicentered prospective study with a large size of samples is needed to confirm this conclusion in the future.

Keywords