Journal of Materials Research and Technology (Sep 2021)

Nano-carbide strengthened as-welded joint for precipitation-hardened austenitic Fe–Mn–Al–C lightweight alloys

  • H.Y. Chen,
  • J.Y. Juang,
  • C.C. Wu,
  • J.M. Yang,
  • T.F. Liu

Journal volume & issue
Vol. 14
pp. 269 – 276

Abstract

Read online

To date, fusion welding the precipitation-hardened austenitic Fe–Mn–Al–C lightweight alloys still remains an insurmountable challenge. In the present study, the viability of using a Fe-28.3Mn-10.2Al-1.62C (in wt.% hereafter) as a welding filler wire for gas tungsten arc welding (GTAW) of as-hot-rolled Fe-29.2Mn-8.8Al-1.65C base material (BM) were systematically investigated. It was striking that in the as-welded condition, a high density of nano-sized κ-carbide precipitates was formed by spinodal decomposition within the significantly refined austenite dendrite cells in the fusion zone (FZ). This unique feature is critical to achieve a high weld strength in virtually all fusion welded precipitation-hardened alloys. In the heat-affected zone (HAZ), the strengthening nano-sized κ-carbides originally existed in the BM was also preserved with no sign of dissolution or noticeable coarsening. Consequently, the as-welded joint exhibited a fairly uniform microhardness across the FZ, HAZ and BM. More significantly, the entire as-welded joint is free of any solidification cracking and/or liquation cracking. The as-welded joint also exhibited an excellent combination of yield strength, ultimate tensile strength and ductility.

Keywords