Cancer Imaging (Mar 2025)
Establishment of a deep-learning-assisted recurrent nasopharyngeal carcinoma detecting simultaneous tactic (DARNDEST) with high cost-effectiveness based on magnetic resonance images: a multicenter study in an endemic area
Abstract
Abstract Background To investigate the feasibility of detecting local recurrent nasopharyngeal carcinoma (rNPC) using unenhanced magnetic resonance images (MRI) and optimize a layered management strategy for follow-up with a deep learning model. Methods Deep learning models based on 3D DenseNet or ResNet frames using unique sequence (T1WI, T2WI, or T1WIC) or a combination of T1WI and T2WI sequences (T1_T2) were developed to detect local rNPC. A deep-learning-assisted recurrent NPC detecting simultaneous tactic (DARNDEST) utilized DenseNet was optimized by superimposing the T1WIC model over the T1_T2 model in a specific population. Diagnostic efficacy (accuracy, sensitivity, specificity) and examination cost of a single MR scan were compared among the conventional method, T1_T2 model, and DARNDEST using McNemar’s Z test. Results No significant differences in overall accuracy, sensitivity, and specificity were found between the T1WIC model and T1WI, T2WI, or T1_T2 models in both test sets (all P > 0.0167). The DARNDEST had higher accuracy and sensitivity but lower specificity than the T1_T2 model in both the internal (accuracy, 85.91% vs. 84.99%; sensitivity, 90.36% vs. 84.26%; specificity, 82.20% vs. 85.59%) and external (accuracy, 86.14% vs. 84.16%; sensitivity, 90.32% vs. 84.95%; specificity, 82.57% vs. 83.49%) test sets. The cost of a single MR examination using DARNDEST was $330,724 (internal) and $328,971 (external) with a hypothetical cohort of 1,000 patients, relative to $313,250 of the T1_T2 model and $340,865 of the conventional method. Conclusions Detecting local rNPC using unenhanced MRI with deep learning is feasible and DARNDEST-driven follow-up management is efficient and economic.