Journal of Functional Biomaterials (Mar 2023)

Magnetic Nanoscalpel for the Effective Treatment of Ascites Tumors

  • Tatiana Zamay,
  • Sergey Zamay,
  • Natalia Luzan,
  • Victoriya Fedotovskaya,
  • Albert Masyugin,
  • Fyodor Zelenov,
  • Anastasia Koshmanova,
  • Elena Nikolaeva,
  • Daria Kirichenko,
  • Dmitry Veprintsev,
  • Olga Kolovskaya,
  • Irina Shchugoreva,
  • Galina Zamay,
  • Ivan Lapin,
  • Anna Lukyanenko,
  • Andrey Borus,
  • Alexander Sukhachev,
  • Mikhail Volochaev,
  • Kirill Lukyanenko,
  • Alexandr Shabanov,
  • Vladimir Zabluda,
  • Alexey Zhizhchenko,
  • Aleksandr Kuchmizhak,
  • Alexey Sokolov,
  • Andrey Narodov,
  • Vladimir Prokopenko,
  • Rinat Galeev,
  • Valery Svetlichnyi,
  • Anna Kichkailo

DOI
https://doi.org/10.3390/jfb14040179
Journal volume & issue
Vol. 14, no. 4
p. 179

Abstract

Read online

One of the promising novel methods for radical tumor resection at a single-cell level is magneto-mechanical microsurgery (MMM) with magnetic nano- or microdisks modified with cancer-recognizing molecules. A low-frequency alternating magnetic field (AMF) remotely drives and controls the procedure. Here, we present characterization and application of magnetic nanodisks (MNDs) as a surgical instrument (“smart nanoscalpel”) at a single-cell level. MNDs with a quasi-dipole three-layer structure (Au/Ni/Au) and DNA aptamer AS42 (AS42-MNDs) on the surface converted magnetic moment into mechanical and destroyed tumor cells. The effectiveness of MMM was analyzed on Ehrlich ascites carcinoma (EAC) cells in vitro and in vivo using sine and square-shaped AMF with frequencies from 1 to 50 Hz with 0.1 to 1 duty-cycle parameters. MMM with the “Nanoscalpel” in a sine-shaped 20 Hz AMF, a rectangular-shaped 10 Hz AMF, and a 0.5 duty cycle was the most effective. A sine-shaped field caused apoptosis, whereas a rectangular-shaped field caused necrosis. Four sessions of MMM with AS42-MNDs significantly reduced the number of cells in the tumor. In contrast, ascites tumors continued to grow in groups of mice and mice treated with MNDs with nonspecific oligonucleotide NO-MND. Thus, applying a “smart nanoscalpel” is practical for the microsurgery of malignant neoplasms.

Keywords