Micromachines (Sep 2024)

Deep Learning-Driven Prediction of Mechanical Properties of 316L Stainless Steel Metallographic by Laser Powder Bed Fusion

  • Zhizhou Zhang,
  • Paul Mativenga,
  • Wenhua Zhang,
  • Shi-qing Huang

DOI
https://doi.org/10.3390/mi15091167
Journal volume & issue
Vol. 15, no. 9
p. 1167

Abstract

Read online

This study developed a new metallography–property relationship neural network (MPR-Net) to predict the relationship between the microstructure and mechanical properties of 316L stainless steel built by laser powder bed fusion (LPBF). The accuracy R2 of MPR-Net was 0.96 and 0.91 for tensile strength and Vickers hardness predictions, respectively, based on optical metallurgy images. Feature visualisation methods, such as gradient-weighted class activation mapping (Grad-CAM) and clustering, were employed to interpret the abstract features within the MPR-Net, providing insights into the molten pool morphology and grain formation mechanisms during the LPBF process. Experimental results showed that the optimal process parameters—190 W laser power and 700 mm/s scanning speed—yielded a maximum tensile strength of 762.83 MPa and a Vickers hardness of 253.07 HV0.2 with nearly full densification (99.97%). The study marks the first application of a convolutional neural network (MPR-Net) to predict the mechanical properties of 316L stainless steel samples manufactured through laser powder bed fusion (LPBF) based on metallography. It innovatively employs techniques such as gradient-weighted class activation mapping (Grad-CAM), spatial coherence testing, and clustering to provide deeper insights into the workings of the machine learning model, enhancing the interpretability of complex neural network decisions in material science.

Keywords