Neurobiology of Disease (Sep 2016)

Reelin-immunoreactive neurons in entorhinal cortex layer II selectively express intracellular amyloid in early Alzheimer's disease

  • Asgeir Kobro-Flatmoen,
  • Anne Nagelhus,
  • Menno P. Witter

Journal volume & issue
Vol. 93
pp. 172 – 183

Abstract

Read online

The onset of Alzheimer's disease (AD) is associated with subtle pathological changes including increased intracellular expression of amyloid-β (Aβ). A structure affected particularly early in the course of AD is the entorhinal cortex, where neuronal death in layer II is observed already at initial stages. Neurons in EC-layer II, particularly those that express the protein Reelin, give rise to projections to the hippocampal dentate gyrus and this projection shows severe loss of synaptic contacts during early-stage AD. Given this anatomical specificity, we sought to determine whether increased intracellular expression of Aβ is selectively associated with Reelin-immunoreactive neurons in layer II of the entorhinal cortex. Here we report that in a transgenic rat model, which mimics the onset and distribution of extracellular amyloid deposits seen in human AD subjects, expression of intracellular Aβ in entorhinal layer II selectively occurs in Reelin-immunoreactive neurons during the early, pre-plaque stage. This Reelin-Aβ association is also present in human subjects with AD-related pathological changes, even in early disease stages. These findings strongly indicate that Reelin-immunoreactive neurons in entorhinal layer II play a crucial role during the initial stages of AD, and may therefore lead to refined hypotheses concerning the origin of this devastating condition.

Keywords