PeerJ (Jul 2023)

Hand grip strength is inversely associated with total daily insulin dose requirement in patients with type 2 diabetes mellitus: a cross-sectional study

  • Da-shuang Chen,
  • Yun-qing Zhu,
  • Wen-ji Ni,
  • Yu-jiao Li,
  • Guo-ping Yin,
  • Zi-yue Shao,
  • Jian Zhu

DOI
https://doi.org/10.7717/peerj.15761
Journal volume & issue
Vol. 11
p. e15761

Abstract

Read online Read online

Background Short-term (2 weeks to 3 months) insulin intensive therapy using continuous subcutaneous insulin infusion (CSII) can improve islet beta cell function and prolong glycemic remission in patients with newly diagnosed type 2 diabetes mellitus (T2DM). However, the total daily insulin dose (TDD, IU/kg/d) required to achieve near-normoglycemic control with CSII still needs to be frequently adjusted based on blood glucose monitoring. Although real-time continuous glucose monitoring (rtCGM), which measures the interstitial fluid glucose concentration continuously without much difficulty, facilitates the adjustment of insulin dosage, its adoption in the T2DM population is strictly limited by insurance coverage and lack of awareness of rtCGM among clinicians. Thus, it is of clinical significance to identify easy-to-use parameters that may allow a more rapid and accurate prediction of TDD requirement. This study aimed to explore the association between hand grip strength (HGS) and TDD requirement in patients with T2DM receiving CSII therapy. Methods A total of 180 eligible patients with T2DM were enrolled in the study and divided into three groups based on their HGS: low (L), medium (M), and high (H). The TDD requirement was calculated on day 7 or 8 of CSII treatment. Anthropometric parameters, including HGS, skeletal muscle mass, skeletal muscle index (SMI) and 6-m gait speed, and laboratory data, were collected on the morning of the second day after admission, within the first 24 h of CSII therapy. These parameters were used to identify significant predictors of TDD requirement using Pearson or Spearman correlation test, and stepwise multiple regression analysis. Results There were no significant differences in age, duration of T2DM, waist-to-hip ratio (WHR), body mass index (BMI), blood pressure, liver function, estimated glomerular filtration rate, triglyceride, total cholesterol, glycosylated hemoglobin A1c (HbA1c), homeostatic model assessment of insulin resistance (HOMA-IR), and homeostasis model assessment of beta cell function (HOMA-β) among the groups. The H group had higher body muscle mass-to-fat ratio (BMFR), skeletal muscle mass-to-fat ratio (SMFR), SMI, 6-m gait speed, and lower TDD requirement than the M and L groups. The HGS negatively correlated with TDD requirement (r = −0.33, p < 0.001) after adjusting for sex, age, BMI, WHR, HbA1c, Ln (HOMA-β), Ln (HOMA-IR), Ln (BMFR), Ln (SMFR), SMI, and 6-m gait speed. Multivariate stepwise regression analysis indicated that HGS was an independent predictor of TDD requirement in patients with T2DM (β = −0.45, p < 0 001). Conclusion Lower HGS is associated with an increased TDD requirement in T2DM patients. HGS may facilitate the prediction of TDD requirement in T2DM patients receiving CSII therapy.

Keywords