Mathematical and Computational Applications (May 2022)

Enhancing Quasi-Newton Acceleration for Fluid-Structure Interaction

  • Kyle Davis,
  • Miriam Schulte,
  • Benjamin Uekermann

DOI
https://doi.org/10.3390/mca27030040
Journal volume & issue
Vol. 27, no. 3
p. 40

Abstract

Read online

We propose two enhancements of quasi-Newton methods used to accelerate coupling iterations for partitioned fluid-structure interaction. Quasi-Newton methods have been established as flexible, yet robust, efficient and accurate coupling methods of multi-physics simulations in general. The coupling library preCICE provides several variants, the so-called IQN-ILS method being the most commonly used. It uses input and output differences of the coupled solvers collected in previous iterations and time steps to approximate Newton iterations. To make quasi-Newton methods both applicable for parallel coupling (where these differences contain data from different physical fields) and to provide a robust approach for re-using information, a combination of information filtering and scaling for the different physical fields is typically required. This leads to good convergence, but increases the cost per iteration. We propose two new approaches—pre-scaling weight monitoring and a new, so-called QR3 filter, to substantially improve runtime while not affecting convergence quality. We evaluate these for a variety of fluid-structure interaction examples. Results show that we achieve drastic speedups for the pure quasi-Newton update steps. In the future, we intend to apply the methods also to volume-coupled scenarios, where these gains can be decisive for the feasibility of the coupling approach.

Keywords