Parasites & Vectors (Jul 2023)

Effects of a complex probiotic preparation, Fengqiang Shengtai and coccidiosis vaccine on the performance and intestinal microbiota of broilers challenged with Eimeria spp.

  • Haiming Cai,
  • Shengjun Luo,
  • Qihong Liu,
  • Qingfeng Zhou,
  • Zhuanqiang Yan,
  • Zhen Kang,
  • Shenquan Liao,
  • Juan Li,
  • Minna Lv,
  • Xuhui Lin,
  • Junjing Hu,
  • Shuilan Yu,
  • Jianfei Zhang,
  • Nanshan Qi,
  • Mingfei Sun

DOI
https://doi.org/10.1186/s13071-023-05855-5
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Coccidiosis, a prominent intestinal protozoan disease, carries significant economic implications for the poultry industry. The aim of this study was to evaluate the effects of Fengqiang Shengtai (BLES), a probiotics product, and coccidiosis vaccine in modulating the intestinal microbiome and providing insight into mitigating the occurrence and management of avian coccidiosis. Methods Broilers included in the study were divided into four pre-treatment groups: the Pre-Con group (commercial diet), Pre-BLES group (BLES supplement), Pre-Vac group (coccidiosis vaccination) and Pre-Vac-BLES group (combined vaccination and BLES). Body weight gain, feed consumption and feed conversion ratio were monitored from age 25 to 55 days. Cecum contents were collected at 8 and 15 days of age for comparative analysis of intestinal microbiomes. In the Pre-BLES and Pre-Vac-BLES groups, probiotics were administered at a dose of 0.01 g per chicken between ages 3 to 6 days and 10–13 days. At 3 days of age, chickens in the Pre-Vac and Pre-Vac-BLES groups were vaccinated with 1700 sporulated oocysts of the live coccidiosis vaccine per chicken. At the age of 25 days, Eimeria spp. challenge experiments were performed based on the aforementioned immunization strategy, and the oocysts per gram (OPG) in the feces, intestinal lesion score and intestinal pathological characteristics were evaluated. Specifically, 30 chickens were randomly selected from each group and orally administered 34,000 sporulated oocysts of Eimeria spp. per chicken, re-defined as Eimeria group, BLES-Eimeria group, Vac-Eimeria group and Vac-BLES-Eimeria group, respectively. Additionally, 30 chickens were randomly selected from the Pre-Con group and included as negative control without Eimeria spp. challenge. Intestinal microbiota was sequenced and analyzed when the broilers were 32 days old. Results A significant improvement was observed in body weight gain of the broilers in the Pre-BLES and Pre-Vac-BLES group at 45 days of age. Analysis of the intestinal microbiota revealed a positive correlation between the experimental groups receiving BLES and coccidiosis vaccines at 8 and 15 days of age with the Enterococcus genus and Lachnospiraceae NK4A136 group, respectively. In addition to the reduced lesion score and OPG values, the combination of coccidiosis vaccine and BLES also reduced the intestinal epithelial abscission induced by coccidiosis vaccines. The results of intestinal microbial function prediction demonstrated that N-glycan biosynthesis and ferroptosis were the prominent signal pathways in the Vac-BLES-Eimeria group. Conclusions Taken together, the results of the present study suggest that supplementation of BLES with coccidiosis vaccine represents a promising strategy for improving growth performance, alleviating clinical manifestations and inducing favorable alterations to the intestinal microbiota in broiler chickens affected by coccidiosis.

Keywords