Agronomy (Nov 2021)

Development and Applications of an In Situ Probe for Multi-Element High-Resolution Measurement at Soil/Sediment-Water Interface and Rice Rhizosphere

  • Meng Zhao,
  • Jiang Liu,
  • Chuangchuang Zhang,
  • Xuefeng Liang,
  • Qian E,
  • Rongle Liu,
  • Yujie Zhao,
  • Xiaowei Liu

DOI
https://doi.org/10.3390/agronomy11122383
Journal volume & issue
Vol. 11, no. 12
p. 2383

Abstract

Read online

The biogeochemistry of multi-elements, such as sulfur (S), phosphorus (P) and arsenic (As), is interlinked especially at interfaces of soil/sediment–water and plant rhizosphere. To explore the biogeochemical behavior of multi-elements such as S-P-As at interfaces, an in situ and high-resolution technology is required. In this study, we developed an in situ probe (LDHs-DGT) based on the diffusive gradients in thin-films technique using a single binding layer to realize the co-measurement of multi-elements including sulfide and oxyanions. Mg-Al layered double hydroxides (LDHs) were synthesized and incorporated into the probe’s binding layer. Laboratorial characterization showed that the LDHs-DGT probe had a high capacity for sulfide, phosphate and arsenate and can effectively determine their levels across a wide range of solution conditions, i.e., pH from 5 to 8 and ionic strengths from 0.005–0.01 mol L−1 NaNO3. The application potential of the LDHS-DGT probe in capturing the concentration profiles of sulfide and oxyanions across the soil/sediment–water interface at a centimeter scale was demonstrated. The synchronous co-variations of labile sulfide and phosphate were observed along an intact river sediment core, demonstrating the redox driven behaviors of oxyanions at aerobic–anaerobic transition zones. Moreover, the LDHS-DGT probe was further used to acquire the dynamic distributions of multi-elements in the plant rhizosphere at a two-dimensional millimeter scale. Compared to treatments of sodium sulfate and mercaptopygorskite fertilization, the addition of elementary S promoted the reduction of sulfate to sulfide along the whole growth stage and thus inhibited the activation of toxic metals in the rice rhizosphere. Collectively, this study provides a tool for convenient measurement of nutrients and metal(loid)s across soil–water/root interfaces at high resolution and thus, a broad application prospect of the tool in sustainable agriculture is expected.

Keywords