Modelling (Jul 2022)
High-Fidelity Digital Twin Data Models by Randomized Dynamic Mode Decomposition and Deep Learning with Applications in Fluid Dynamics
Abstract
The purpose of this paper is the identification of high-fidelity digital twin data models from numerical code outputs by non-intrusive techniques (i.e., not requiring Galerkin projection of the governing equations onto the reduced modes basis). In this paper the author defines the concept of the digital twin data model (DTM) as a model of reduced complexity that has the main feature of mirroring the original process behavior. The significant advantage of a DTM is to reproduce the dynamics with high accuracy and reduced costs in CPU time and hardware for settings difficult to explore because of the complexity of the dynamics over time. This paper introduces a new framework for creating efficient digital twin data models by combining two state-of-the-art tools: randomized dynamic mode decomposition and deep learning artificial intelligence. It is shown that the outputs are consistent with the original source data with the advantage of reduced complexity. The DTMs are investigated in the numerical simulation of three shock wave phenomena with increasing complexity. The author performs a thorough assessment of the performance of the new digital twin data models in terms of numerical accuracy and computational efficiency.
Keywords