Mathematics in Engineering (Sep 2023)

Uniqueness of entire solutions to quasilinear equations of p-Laplace type

  • Nguyen Cong Phuc,
  • Igor E. Verbitsky

DOI
https://doi.org/10.3934/mine.2023068
Journal volume & issue
Vol. 5, no. 3
pp. 1 – 33

Abstract

Read online

We prove the uniqueness property for a class of entire solutions to the equation $ \begin{equation*} \left\{ \begin{array}{ll} -{\rm div}\, \mathcal{A}(x,\nabla u) = \sigma, \quad u\geq 0 \quad {\text{in }} \mathbb{R}^n, \\ {\liminf\limits_{|x|\rightarrow \infty}}\, u = 0, \end{array} \right. \end{equation*} $ where $ \sigma $ is a nonnegative locally finite measure in $ \mathbb{R}^n $, absolutely continuous with respect to the $ p $-capacity, and $ {\rm div}\, \mathcal{A}(x, \nabla u) $ is the $ \mathcal{A} $-Laplace operator, under standard growth and monotonicity assumptions of order $ p $ ($ 1 < p < \infty $) on $ \mathcal{A}(x, \xi) $ ($ x, \xi \in \mathbb{R}^n $); the model case $ \mathcal{A}(x, \xi) = \xi | \xi |^{p-2} $ corresponds to the $ p $-Laplace operator $ \Delta_p $ on $ \mathbb{R}^n $. Our main results establish uniqueness of solutions to a similar problem, $ \begin{equation*} \left\{ \begin{array}{ll} -{\rm div}\, \mathcal{A}(x,\nabla u) = \sigma u^q +\mu, \quad u\geq 0 \quad {\text{in }} \mathbb{R}^n, \\ {\liminf\limits_{|x|\rightarrow \infty}}\, u = 0, \end{array} \right. \end{equation*} $ in the sub-natural growth case $ 0 < q < p-1 $, where $ \mu, \sigma $ are nonnegative locally finite measures in $ \mathbb{R}^n $, absolutely continuous with respect to the $ p $-capacity, and $ \mathcal{A}(x, \xi) $ satisfies an additional homogeneity condition, which holds in particular for the $ p $-Laplace operator.

Keywords