World Electric Vehicle Journal (Jun 2024)

Research on Unmanned Vehicle Path Planning Based on the Fusion of an Improved Rapidly Exploring Random Tree Algorithm and an Improved Dynamic Window Approach Algorithm

  • Shuang Wang,
  • Gang Li,
  • Boju Liu

DOI
https://doi.org/10.3390/wevj15070292
Journal volume & issue
Vol. 15, no. 7
p. 292

Abstract

Read online

Aiming at the problem that the traditional rapidly exploring random tree (RRT) algorithm only considers the global path of unmanned vehicles in a static environment, which has the limitation of not being able to avoid unknown dynamic obstacles in real time, and that the traditional dynamic window approach (DWA) algorithm is prone to fall into a local optimum during local path planning, this paper proposes a path planning method for unmanned vehicles that integrates improved RRT and DWA algorithms. The RRT algorithm is improved by introducing strategies such as target-biased random sampling, adaptive step size, and adaptive radius node screening, which enhance the efficiency and safety of path planning. The global path key points generated by the improved RRT algorithm are used as the subtarget points of the DWA algorithm, and the DWA algorithm is optimized through the design of an adaptive evaluation function weighting method based on real-time obstacle distances to achieve more reasonable local path planning. Through simulation experiments, the fusion algorithm shows promising results in a variety of typical static and dynamic mixed driving scenarios, can effectively plan a path that meets the driving requirements of an unmanned vehicle, avoids unknown dynamic obstacles, and shows higher path optimization efficiency and driving stability in complex environments, which provides strong support for an unmanned vehicle’s path planning in complex environments.

Keywords