BMC Genomics (Jun 2008)

Genomic mid-range inhomogeneity correlates with an abundance of RNA secondary structures

  • Song Jun,
  • Dwyer Trisha,
  • Wittenschlaeger Thomas,
  • Bechtel Jason M,
  • Arunachalam Sasi,
  • Ramakrishnan Sadeesh K,
  • Shepard Samuel,
  • Fedorov Alexei

DOI
https://doi.org/10.1186/1471-2164-9-284
Journal volume & issue
Vol. 9, no. 1
p. 284

Abstract

Read online

Abstract Background Genomes possess different levels of non-randomness, in particular, an inhomogeneity in their nucleotide composition. Inhomogeneity is manifest from the short-range where neighboring nucleotides influence the choice of base at a site, to the long-range, commonly known as isochores, where a particular base composition can span millions of nucleotides. A separate genomic issue that has yet to be thoroughly elucidated is the role that RNA secondary structure (SS) plays in gene expression. Results We present novel data and approaches that show that a mid-range inhomogeneity (~30 to 1000 nt) not only exists in mammalian genomes but is also significantly associated with strong RNA SS. A whole-genome bioinformatics investigation of local SS in a set of 11,315 non-redundant human pre-mRNA sequences has been carried out. Four distinct components of these molecules (5'-UTRs, exons, introns and 3'-UTRs) were considered separately, since they differ in overall nucleotide composition, sequence motifs and periodicities. For each pre-mRNA component, the abundance of strong local SS ( Conclusion We demonstrate that the excess of strong local SS in pre-mRNAs is linked to the little explored phenomenon of genomic mid-range inhomogeneity (MRI). MRI is an interdependence between nucleotide choice and base composition over a distance of 20–1000 nt. Additionally, we have created a public computational resource to support further study of genomic MRI.