Identification and Fine Mapping of Quantitative Trait Loci for Tiller Angle Using Chromosome Segment Substitution Lines in Rice (<i>Oryza Sativa</i> L.)
Yujia Leng,
Tao Tao,
Shuai Lu,
Ran Liu,
Qingqing Yang,
Mingqiu Zhang,
Lianmin Hong,
Qianqian Guo,
Xinzhe Ren,
Zhidi Yang,
Xiuling Cai,
Sukui Jin,
Jiping Gao
Affiliations
Yujia Leng
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Tao Tao
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Shuai Lu
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Ran Liu
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Qingqing Yang
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Mingqiu Zhang
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Lianmin Hong
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Qianqian Guo
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Xinzhe Ren
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Zhidi Yang
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Xiuling Cai
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Sukui Jin
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
Jiping Gao
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
The tiller angle, which is an important agronomic trait, determines plant architecture and greatly influences the grain yield of rice. In this study, a population of chromosome segment substitution lines derived from a cross between a japonica variety with a compact plant architecture—Koshihikari—and an indica variety with a spread-out plant architecture—Nona Bokra—was used to investigate the genetic basis of the tiller angle. Five quantitative trait loci (qTA1, qTA5, qTA9-1, qTA9-2, and qTA11) for the tiller angle were detected on chromosomes 1, 5, 9, 9, and 11 in two different environments. The phenotypic variation in these QTLs ranged from 3.78% to 8.22%. Two pairs of digenic epistatic QTLs were detected in Lingshui. The epistatic interaction explained 15.19% and 13.60% of the phenotypic variance, respectively. Among the five QTLs, qTA9-2 was detected in both environments. An F2 mapping population containing the qTA9-2 QTL was established. The location of qTA9-2 was narrowed down to a 187 kb region between InDel markers M9 and M10 on chromosome 9. Thirty open reading frames (ORFs), including TAC1, a gene known to regulate the tiller angle, were identified in this region. The gene sequencing results suggested that a base substitution from G to A at position 1557 in the 3′-untranslated region led to a difference in the expression of qTA9-2 in Koshihikari and Nona Bokra. These findings provide a potential gene resource for the improvement of rice plant architecture.