Acta Psychologica (Jun 2024)

Separating spatial representations from polarity encoding in the processing of number and sequence stimuli in a four-way classification task

  • Qiangqiang Wang,
  • Jiayi Lou,
  • Mengxia Li,
  • Yanwen Wu

Journal volume & issue
Vol. 246
p. 104287

Abstract

Read online

Although the SNARC effect in the processing of most magnitude stimuli and sequence stimuli has been reported for the past 30 years, it remains unclear whether this effect is caused by the spatial representation or polarity encoding of stimuli. In the present study, we designed five experiments using a four-way classification task to evaluate the ability of spatial representation theory and polarity encoding theory to explain the SNARC effect in the processing of number and sequence stimuli. In all five experiments in the present study, stimuli (Experiments 1 and 4: four different Arabic numbers, Experiment 2: sequence stimuli, Experiment 3: ordinal sequences relevant to working memory, Experiment 5: Chinese characters without any implicit spatial information) were centrally presented. Participants were asked to respond to specific number or sequence stimuli by pressing the A, S, K, and L keys in consistent trials (or the L, K, S, and A keys in inconsistent trials). The results showed that (1) the SNARC effect occurred in the processing of number and sequence stimuli both when only one specific number was mapped to one specific key (Experiments 1, 2 and 3) and when two numbers were mapped to one specific key (Experiment 4). (2) There was not a SNARC effect when the numbers were replaced with Chinese characters without any implicit spatial information (Experiment 5). The results of these five experiments imply that the SNARC effect in the processing of magnitude stimuli, including numbers and sequences, originates from the spatial representation of stimuli, supporting spatial representation theory.

Keywords