Dynamic	modelling of catalytic three-phase reactors for hydrogenation and oxidation processes

Brazilian Journal of Chemical Engineering. 2000;17(4-7):1023-1035


Journal Homepage

Journal Title: Brazilian Journal of Chemical Engineering

ISSN: 0104-6632 (Print); 1678-4383 (Online)

Publisher: Brazilian Society of Chemical Engineering

LCC Subject Category: Technology: Chemical technology: Chemical engineering

Country of publisher: Brazil

Language of fulltext: English

Full-text formats available: PDF, HTML, XML



Salmi T.
Wärnå J.
Toppinen S.
Rönnholm M.
Mikkola J.P.


Peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 12 weeks


Abstract | Full Text

The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle) beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.