International Journal of Nanomedicine (Nov 2016)
Polyethyleneimine-coated quantum dots for miRNA delivery and its enhanced suppression in HepG2 cells
Abstract
Gaofeng Liang,1 Yang Li,1 Wenpo Feng,1 Xinshuai Wang,2 Aihua Jing,1 Jinghua Li,1 Kaiwang Ma1 1Department of Biomedical Engineering, School of Medical Technology & Engineering, 2Department of Oncology, The First Affiliated Hospital, Henan University of Science & Technology, Luoyang, People’s Republic of China Abstract: Quantum dots (QDs) have been intensively investigated for bioimaging, drug delivery, and labeling probes because of their unique optical properties. In this study, CdSe/ZnS QDs-based nonviral vectors with the dual functions of delivering miR-26a plasmid and bioimaging were formulated by capping the surface of CdSe/ZnS QDs with polyethyleneimine (PEI). The PEI-coated QDs were capable of condensing miR-26a expression vector into nanocomplexes that can emit strong red luminescence when loaded with CdSe/ZnS QDs. Further results showed that PEI-modified nanoparticles (NPs) could transfect miR-26a plasmid into HepG2 cells in vitro. Meanwhile, imaging of living cells could be achieved based on the CdSe/ZnS QDs. Further study suggested that miR-26a transfection up-regulated miR-26a expression, induced cycle arrest, and triggered proliferation inhibition in HepG2 cells. The results indicated that PEI-coated QD NPs possess the capability of bioimaging and gene delivery and could be a promising vehicle with the engineering of QD NPs for gene therapy in the future. Keywords: miR-26a, PEI/QDs, HepG2, gene delivery, bioimaging