Journal of Wood Science (Jan 2024)

Environmental impacts of structural lumber production in Japan

  • Katsuyuki Nakano,
  • Masahiro Koide,
  • Yuta Yamada,
  • Takuya Ogawa,
  • Nobuaki Hattori

DOI
https://doi.org/10.1186/s10086-023-02118-w
Journal volume & issue
Vol. 70, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Low-rise buildings in Japan are predominantly made of wood. Furthermore, the government promotes the use of wood in mid- and high-rise buildings to tackle climate change. Therefore, the environmental impact of structural lumber should be assessed. In this study, we evaluated greenhouse gas (GHG) emissions and resource consumption associated with structural lumber production using life cycle assessment. Herein, we focused on Japanese Agricultural Standard certified structural lumber (artificially dried lumber and machine-grade structural lumber) made from Japanese roundwood. To ensure representativeness, 15 companies and 15 sawmills covering more than 50% of Japan's structural lumber production were selected and data on their production were collected. The results show that the GHG emissions and resource consumption of Japanese structural lumber are 7.99 × 10 kg-CO2e/m3 and 1.77 × 10–3 kg-Sb eq./m3, respectively. The major sources of GHG emissions are electricity and roundwood production. Roundwood and metal tools significantly affect resource consumption. The recycling of rare metals in tools is essential for reducing resource consumption. A significant amount of heat energy is utilized for drying, and this heat energy is supplied from both biomass and fossil fuels. GHG emissions and resource consumption are 5.3 and 1.6 times higher, respectively, if biomass fuel is replaced by fossil fuel. Policies supporting the introduction of biomass boilers have been highly effective. It is recommended to further promote measures such as replacing fossil fuel-based boilers with biomass boilers and effectively utilizing biomass boilers in multiple regional sawmills. In addition, switching from grid electricity to electricity generated by renewable energy sources is effective for further reducing environmental impacts. The long-term use of structural lumber is valid for combating global warming because it fixes carbon for decades. In this study, the CO2 emissions from biomasaluated in terms of carbon neutrality. Appropriate forest management is a prerequisite for carbon neutrality, and the promotion of sustainable forest management, such as reforestation after logging, is crucial.

Keywords