Journal of Lipid Research (Oct 2010)

Quantifying conversion of linoleic to arachidonic and other n-6 polyunsaturated fatty acids in unanesthetized rats

  • Fei Gao,
  • Dale Kiesewetter,
  • Lisa Chang,
  • Stanley I. Rapoport,
  • Miki Igarashi

Journal volume & issue
Vol. 51, no. 10
pp. 2940 – 2946

Abstract

Read online

Isotope feeding studies report a wide range of conversion fractions of dietary shorter-chain polyunsaturated fatty acids (PUFAs) to long-chain PUFAs, which limits assessing nutritional requirements and organ effects of arachidonic (AA, 20:4n-6) and docosahexaenoic (DHA, 22:6n-3) acids. In this study, whole-body (largely liver) steady-state conversion coefficients and rates of circulating unesterified linoleic acid (LA, 18:2n-6) to esterified AA and other elongated n-6 PUFAs were quantified directly using operational equations, in unanesthetized adult rats on a high-DHA but AA-free diet, using 2 h of intravenous [U-13C]LA infusion. Unesterified LA was converted to esterified LA in plasma at a greater rate than to esterified γ-linolenic (γ-LNA, 18:3n-6), eicosatrienoic acid (ETA, 20:3n-6), or AA. The steady-state whole-body synthesis-secretion (conversion) coefficient to AA equaled 5.4 × 10−3 min−1, while the conversion rate (coefficient × concentration) equaled 16.1 μmol/day. This rate exceeds the reported brain AA consumption rate by 27-fold. As brain and heart cannot synthesize significant AA from circulating LA, liver synthesis is necessary to maintain their homeostatic AA concentrations in the absence of dietary AA. The heavy-isotope intravenous infusion method could be used to quantify steady-state liver synthesis-secretion of AA from LA under different conditions in rodents and in humans.

Keywords